Pseudomonas aeruginosa dose response and bathing water infection.

نویسندگان

  • D J Roser
  • B van den Akker
  • S Boase
  • C N Haas
  • N J Ashbolt
  • S A Rice
چکیده

Pseudomonas aeruginosa is the opportunistic pathogen mostly implicated in folliculitis and acute otitis externa in pools and hot tubs. Nevertheless, infection risks remain poorly quantified. This paper reviews disease aetiologies and bacterial skin colonization science to advance dose-response theory development. Three model forms are identified for predicting disease likelihood from pathogen density. Two are based on Furumoto & Mickey's exponential 'single-hit' model and predict infection likelihood and severity (lesions/m2), respectively. 'Third-generation', mechanistic, dose-response algorithm development is additionally scoped. The proposed formulation integrates dispersion, epidermal interaction, and follicle invasion. The review also details uncertainties needing consideration which pertain to water quality, outbreaks, exposure time, infection sites, biofilms, cerumen, environmental factors (e.g. skin saturation, hydrodynamics), and whether P. aeruginosa is endogenous or exogenous. The review's findings are used to propose a conceptual infection model and identify research priorities including pool dose-response modelling, epidermis ecology and infection likelihood-based hygiene management.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of solar radiation on survival of indicator bacteria in bathing waters.

Sunlight exposure is considered to be the most important cause of "natural disinfection" in surface water environments. The UV-B portion of the solar spectrum is the most bactericidal, causing direct (photo-biological) DNA damage. In the present experimental study, the effect of solar radiation on the elimination of bacteria in water, especially in surface water, was studied. The influence of d...

متن کامل

Dose-response algorithms for water-borne Pseudomonas aeruginosa folliculitis.

We developed two dose-response algorithms for P. aeruginosa pool folliculitis using bacterial and lesion density estimates, associated with undetectable, significant, and almost certain folliculitis. Literature data were fitted to Furumoto & Mickey's equations, developed for plant epidermis-invading pathogens: N l = A ln(1 + BC) (log-linear model); P inf = 1-e(-r c C) (exponential model), where...

متن کامل

Effector mechanisms of protection against Pseudomonas aeruginosa keratitis in immunized rats.

Pseudomonas aeruginosa is an opportunistic pathogen which causes sight-threatening corneal infections in humans. The purpose of this study was to evaluate various immunization routes that may provide protection against Pseudomonas keratitis and to define the molecular mechanisms involved in the protection. Sprague-Dawley rats (10 to 12 weeks old) were immunized using paraformaldehyde-killed P. ...

متن کامل

Diverse Pseudomonas aeruginosa gene products stimulate respiratory epithelial cells to produce interleukin-8.

Respiratory epithelial cells play a crucial role in the inflammatory response during Pseudomonas aeruginosa infection in the lungs of patients with cystic fibrosis. In this study, we determined whether the binding of specific Pseudomonas gene products (pilin, flagellin) to their receptors on respiratory epithelial cells would result in production of the neutrophil chemoattractant IL-8. Piliated...

متن کامل

Phenotypic stress response of Pseudomonas aeruginosa following culture in water microcosms.

The purpose of the present study was to explore the potential behavioural changes of Pseudomonas aeruginosa following growth in different aquatic environmental conditions. To achieve this, P. aeruginosa was cultured in various water microcosms for 12 months under fixed (pH, nutrients and temperature) factors. P. aeruginosa responses to these conditions were investigated using colony morphotype,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Epidemiology and infection

دوره 142 3  شماره 

صفحات  -

تاریخ انتشار 2014